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Abstract 
 Measuring the electrical impulses of the heart through an electrocardiogram (ECG) has become the 
primary method for detecting problematic heart conditions such as heart attacks or cardiac arrhythmia. 
Gaining more insight into the dynamical behavior of heartbeat irregularities would have meaningful 
applications in cardiology, especially if an “irregular” heartbeat could be characterized as being 
monofractal or multifractal, as opposed to being merely random. Using times series from 
electrocardiogram data, anyone is able to apply multifractal detrended fluctuation analysis (MDFA) to 
investigate possible multifractal structure of ECG data. Our work is aimed to test  multifractal structure 
in time series data from an electrocardiogram. We examine data from ECGControl program. The 
research is executed in Octave runtime. 

 

Introduction 
The structural characteristics of biomedical 

signals are often visually apparent, but not captured 
by conventional measures like the average amplitude 
of the signal. Biomedical signals from a wide range 
of physiological phenomena possess a scale invariant 
structure. A biomedical signal has a scale invariant 
structure when the structure repeats itself on 
subintervals of the signal.Formally, the biomedical 
signal X(t) are scale invariant when )()( tXcctX H . 
Fractal analyses estimates the power law exponent, H, 
that defines the particular kind of scale invariant 
structure of the biomedical signal. Fractal analyses 
are frequently employed in biomedical signal 
processing to define the scale invariant structure in 
ECG.Several reports during the last decade suggest 
that changes in the scale invariant structure of 
biomedical signals reflect changes in the adaptability 
of physiological processes and successful treatment 
of pathological conditions might change fractal 
structure and improve health. Fractal analyses are 
therefore promising prognostic and diagnostic tools in 
biomedical signal processing. 

Monofractal and multifractal structures of the 
biomedical signal are particular kind of scale 
invariant structures. Most commonly, the monofractal 
structure of biomedical signals are defined by a single 
power law exponent and assumes that the scale 
invariance is independent on time and space. 
However, spatial and temporal variation in scale 
invariant structure of the biomedical signal often 
appears. These spatial and temporal variations 
indicate a multifractal structure of the biomedical 
signal that is defined by a multifractal spectrum of 
power law exponents. As an example, age related 

changes in the scale invariant structure of heart rate 
variability are indicated by changes of the multifractal 
spectrum rather than a single power law 
exponent.The width and shape of the multifractal 
spectrum can also differentiate between the heart rate 
variability from patients with heart diseases like 
ventricular tachycardia, ventricular fibrillation and 
congestive heart failure [1]. 

The aim of the work is to test multifractal 
structure in time series data from an 
electrocardiogram. The task is to examine data from 
ECGControl program [2, 3].The research is executed 
in Octave runtime.  

Description of data 
The electrocardiograph has information about 

electrical potentials on the surface of the skin. To do 
this, the electrodes attached to the chest and 
extremities were applied. These electrodes are called 
leads. Up to 6 leads are typically set on the chest and 
extremities.  Chest leads V1-V6, and denotes the 
leads on the limbs are called main (I, II, III) and 
reinforced (aVR, aVL, aVF). All the leads give a 
different picture of the fluctuations, but summarizing 
information from all the electrodes, you can find out 
details of the heart as a whole. 

Computer console ECG Light together with 
the program ECGControl allows you to record the 
electrocardiogram in six standard leads, save as a file, 
print, and carry out ECG contour analysis. In the area 
of leads the fragment window displays the period 
averaged electrocardiograms, on the selected slice 
three standard (I, II, III) and three enhanced leads 
(aVR, aVL, aVF). 

Having a total picture of these elements ECG 
you can judge the EHA (electrical heart axis), which 



indicates the presence of blockades and helps 
determine the location of the heart in the chest.There 
is a special coordinate system, which is located on the 
chest and рудзы to determine which side has an axis. 
Electrodes ECG, respectively, are located in this 
coordinate system. In a healthy person the right 
ventricle somewhat more left, so on the ECG heart 
axis deviates slightly to the right and down. It is 
considered to be the norm. In this case, the 
cardiogram is called the normogram [4]. We examine 
the normogram from ECGControl program. Figure 1, 
2 show time series for three standard (I, II, III) and 
three enhanced leads (aVR, aVL, aVF). 

 

 
Figure 1 - Time series for standard (I, II, III) leads 

 

 
Figure 2 - Time series for enhanced leads 

Description of MDFA 
The structure of the monofractal and 

multifractal time series are different even though they 
have similar overall root-mean-square (RMS) and 
slopes H. The multifractal time series have local 
fluctuations with both extreme small and large 
magnitudes that is absent in the monofractal time 
series. The absence of fluctuations with extreme large 

and small magnitudes results in a normal distribution 
for the monofractal time series where the variation is 
described by the second order statistical moment (i.e., 
variance) alone. Monofractal detrended fluctuation 
analysis (DFA) is therefore based on the second order 
statistics of the overall RMS.  

In the multifractal time series, local 
fluctuation, RMS(v), will be extreme large magnitude 
for segments v within the time periods of large 
fluctuations and extreme small magnitude for 
segments v within the time periods of small 
fluctuations. Consequently, the multifractal time 
series are not normal distributed and all q-order 
statistical moments should to be considered. Thus, it’s 
necessary to extend the overall RMS in the monofractal 
DFA to the following q-order RMS of the multifractal 
DFA.The important steps involved in this method of 
analysis are mentioned here: 

Step1: Computing the average  
Let us suppose x(i) for i= 1 . . .N, be a non-

stationary time series of length N. The mean of the 
above series is given by 
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Step 2: Computing the integrated time series 
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Step 3: Dividing the integrated time series 

to sN non-overlappingbins (where )/int( sNNs    
and s is the length of the bin) and computing the 
fluctuation function. Since N is not a multiple of s, so 
in order to include this part of the series the entire 
process is repeated starting from the opposite end. 
Thus, sN2 bins are obtained and for each bin we 
perform least square fit of the series and then 
determine the variancefor each bin sN,...2,1 : 
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least square fitted value in the bin  . 
 
Step4: Computing fluctuation function  
The q-th order fluctuation function )(sFq is obtained 

after averaging over sN2 bins. 
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where q is an index which can take all possible values 
except zero because in that case the factor 1/q blow s 
up. qF cannot be obtained by the nor m al aver aging 
procedure; instead a logarithmic aver aging procedure 
is applied 
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Step 5: The procedure is repeated by varying 
the value of s. )(sFq increases with increase in value 
of s. If the series is long range power correlated, then 

)(sFq  will show power law behavior )(~)( qh
q ssF . 

If such a scaling exists ))(ln( sFq  will depend 
linearly on ln(s) ,with h(q) as the slope. In general the 
exponent h(q) depends on q. For stationary time 
series h(2) is identical with the Hurst exponent H. 
h(q) is said to be the generalized Hurst exponent. A 
monofractal time series is characterized by 
uniqueh(q) for all values of q. 

The generalized Hurst exponent h(q) of MF-
DFA is related to 
the classical scaling exponent τ(q) by the relation 
 1)()(  qqhq  (5) 

A monofractal series with long range 
correlation is characterized by linearly dependent q 
order exponent )(q  with a single Hurst exponent H. 
Multifractal signal have multiple Hurst exponent 
and )(q  depends non-linearly on q. The singularity 
spectrum )(f is related to h(q) by 
 )()( qhqqh   (6) 
 1))(()(  qhqf   (7) 
where is the singularity strength and )(f  
specifies the dimension of subset series that is 
characterized by  . The multifractal spectrum is 
capable of providing information about relative 
importance of various fractal exponents in the series 
e.g., the width of the spectrum denotes range of 
exponents. A quantitative characterization of the 
spectra may be obtained by least square fitting it to a 
quadratic function around the position of maximum 

0 . 
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where C is an additive constant 1)( 0  fC . B 
indicates the asymmetry of the spectrum. It is zero for 
asymmetric spectrum. 

The width of the spectrum can be obtained by 
extrapolating the fitted curve to zero. Width W is 
defined as  
 21  W  (9) 
with 0)()( 21   ff . It has been proposed by 
some groups that the width of the multifractal spectra 
is a measure of degree of multifractality. For a 
monofractalseries, h(q) is independent of q. Hence 
from relation (6) and(7) it follows that the width of 
the spectrum will be zero for amonofractal series. The 
more the width, the more multifractal isthe spectrum. 

The origin of multifractality in a time series 
can be determined. Two basic sources of 
multifractality in the time series are: 1) multifractality 
due to broad probability density function for the 
values of the time series; 2) multifractality due to 
different long range correlations of the small and 
large fluctuations. 

The origin of multifractality can be ascertained 
by analyzing the corresponding randomly shuffled 
series. In the shuffling procedure, the values are put 
into random order and hence allcorrelations are 
destroyed. Hence, if the multifractality is due tolong- 
range correlations, then the shuffled series exhibits a 
non-fractal scaling. On the other hand, if the 
originalh(q) dependencedoes not change, i.e., 

)()( qhqh shuffled , then the multifractality is due to 
the broad probability density, which is not affected in 
theshuffling procedure. If both kinds of 
multifractality are present ina given series, the 
shuffled series will show weaker multifractalitythan 
the original series. 

The autocorrelation exponent  can be 
estimated from the relation given below: 
 )2(22 h . (10) 

 
For uncorrelated or short-range correlated 

data, h(2) is expected to have a value 0.5 while a 
value greater than 0.5 is expected forlong-range 
correlations. Therefore, for uncorrelated data,  has 
avalue 1 and the lower the value the more correlated 
is the data. 

The basic component of MFDFA is the local 
fluctuation, RMS. Statistical parameters other than 
RMS can be used to define the local fluctuation in a 
time series. The MFDFA has been shown to perform 
as well as or better than these multifractal analyses. 
However, extensions of detrending procedure in 
MFDFA should be considered when the biomedical 
time series contains strong oscillatory or ramp-like 
trends [5-7]. 

Description of results  
Figures3-5 show scaling function Fq (q -order 

RMS) and corresponding regression line computed by 
MFDFA for three standard (I, II, III) leads.  

Figures 6-8 show scaling function Fq and 
corresponding regression line for three enhanced 
leads (aVR, aVL, aVF). The scaling functions 
Fq(dots) and corresponding regression slopes Hq 
(dashed lines) are q-dependent. It means that time 
series are multifractal. They are time series: norm_1, 
norm_2, norm_3, norm_avr, norm_avl, norm_avf. 
 

 
Figure 3- Function Fq for the norm_1 



 
Figure 4- Function Fq for the norm_2 

 

 
Figure 5- Function Fq for the norm_3 

 

 
Figure 6 - Function Fq for the norm_avr 

 

 
Figure 7 - Function Fq for the norm_avl 

 

 
 

Figure 8 - Function Fq for the norm_avf 
 

Figures9-14 show the q-order Hurst exponent 
Hq for the time series, where the colored dots 
represents the slopes Hq for q =−5, 0 and 5. Hq are q-
dependent and time series are multifractal.  

Figures 15-20 show mass exponent tq. The 
multifractal time series have mass exponents with a 
curved q-dependency and, consequently, a decreasing 
singularity exponent hq. 

 
Figure 9 - Hurst exponent for the norm_1 

 

 
Figure 10 - Hurst exponent for the norm_2 

 
Figure 11 - Hurst exponent for the norm_3 

 

 
Figure 12 - Hurst exponent for the norm_avr 

 



 
Figure 13 - Hurst exponent for the norm_avl 

 
Figure 14 - Hurst exponent for the norm_avf 

 

 
Figure 15 - Mass exponent for the norm_1 

 
Figure 16 - Mass exponent for the norm_2 

 
Figure 17 - Mass exponent for the norm_3 

 
Figure 18 - Mass exponent for the norm_avr 

 

 
Figure 19 - Mass exponent for the norm_avl 

 

 
Figure 20 - Mass exponent for the norm_avf 

 
The resulting spectrums are a large arc 

where the difference between the maximum and 
minimum hq are called the multifractal spectrum. 
Figures 21-26 show the resulting spectrumsand 

)(fDq  , qh . 

 
Figure 21 - Multifractal spectrum for the norm_1 

 



 
Figure 22 - Multifractal spectrum for the norm_2 

 
 

 
Figure 23 - Multifractal spectrum for the norm_3 

 
 

 
Figure 24 - Multifractal spectrum for the norm_avr 

 
 

 
Figure 25 - Multifractal spectrum for the norm_avl 

 
Figure 26 - Multifractal spectrum for the norm_avf 

 
Conclusions 
 

This work is to show the executed multifractal 
analysis of ECG data. The following results were 
obtained for all time series.  

1. The scaling functions are q-dependent. 
2. Hurst exponent Hq is q-dependent. 
3. The time series have mass exponents with a 

curved q-dependency. 
4. Time series have a wide range of multifractal 

spectrum. 
For these reasons, the timeseries are 

multifraсtal. 
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Бельков Д.В., Едемская Е.Н., Лазебная Л.А., Бойко В.Н. Мультифрактальный анализ 
детрендированных флуктуаций ЭКГ-данных. Измерение электрических импульсов сердца 
с помощью электрокардиограммы (ЭКГ) стало основным методом выявления проблемных 
состояний сердца, таких как сердечные приступы или нарушение ритма сердца. Оно 
широко применяется в кардиологии для лучшего понимания динамического поведения 
нарушений сердечного ритма, особенно при «нерегулярном» сердцебиении, и может быть 
охарактеризовано как монофрактальное или мультифрактальное, а не просто случайное. 
Используя временные ряды данных электрокардиограммы, можно применять 
мультифрактальный анализ флуктуаций (MDFA) для исследования возможной 
мультифрактальной структуры данных ЭКГ. Данная работа посвящена тестированию 
мультифрактальной структуры временных рядов данных электрокардиограммы. 
Исходные данные получены с помощью программы ECGControl. Исследование выполнено в 
среде Octave. 
 
Ключевые слова: мультифрактальный анализ флуктуаций, монофрактальный, 
многофрактальный, временные диаграммы 
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electrocardiogram (ECG) has become the primary method for detecting problematic heart 
conditions such as heart attacks or cardiac arrhythmia. Gaining more insight into the dynamical 
behavior of heartbeat irregularities would have meaningful applications in cardiology, especially 
if an “irregular” heartbeat could be characterized as being monofractal or multifractal, as 
opposed to being merely random. Using times series from electrocardiogram data, anyone is able 
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