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Abstract

Measuring the electrical impulses of the heart through an electrocardiogram (ECG) has become the
primary method for detecting problematic heart conditions such as heart attacks or cardiac arrhythmia.
Gaining more insight into the dynamical behavior of heartbeat irregularities would have meaningful
applications in cardiology, especially if an “irregular” heartbeat could be characterized as being

monofractal or multifractal,

as opposed to being merely random. Using times series from

electrocardiogram data, anyone is able to apply multifractal detrended fluctuation analysis (MDFA) to
investigate possible multifractal structure of ECG data. Our work is aimed to test multifractal structure
in time series data from an electrocardiogram. We examine data from ECGControl program. The

research is executed in Octave runtime.

Introduction

The structural characteristics of biomedical
signals are often visually apparent, but not captured
by conventional measures like the average amplitude
of the signal. Biomedical signals from a wide range
of physiological phenomena possess a scale invariant
structure. A biomedical signal has a scale invariant
structure when the structure repeats itself on
subintervals of the signal.Formally, the biomedical
signal X(¢) are scale invariant when X (c7) = ¢ X (7).
Fractal analyses estimates the power law exponent, H,
that defines the particular kind of scale invariant
structure of the biomedical signal. Fractal analyses
are frequently employed in biomedical signal
processing to define the scale invariant structure in
ECG.Several reports during the last decade suggest
that changes in the scale invariant structure of
biomedical signals reflect changes in the adaptability
of physiological processes and successful treatment
of pathological conditions might change fractal
structure and improve health. Fractal analyses are
therefore promising prognostic and diagnostic tools in
biomedical signal processing.

Monofractal and multifractal structures of the
biomedical signal are particular kind of scale
invariant structures. Most commonly, the monofractal
structure of biomedical signals are defined by a single
power law exponent and assumes that the scale
invariance is independent on time and space.
However, spatial and temporal variation in scale
invariant structure of the biomedical signal often
appears. These spatial and temporal variations
indicate a multifractal structure of the biomedical
signal that is defined by a multifractal spectrum of
power law exponents. As an example, age related

changes in the scale invariant structure of heart rate
variability are indicated by changes of the multifractal
spectrum rather than a single power law
exponent.The width and shape of the multifractal
spectrum can also differentiate between the heart rate
variability from patients with heart diseases like
ventricular tachycardia, ventricular fibrillation and
congestive heart failure [1].

The aim of the work is to test multifractal
structure  in  time series data from an
electrocardiogram. The task is to examine data from
ECGControl program [2, 3].The research is executed
in Octave runtime.

Description of data

The electrocardiograph has information about
electrical potentials on the surface of the skin. To do
this, the electrodes attached to the chest and
extremities were applied. These electrodes are called
leads. Up to 6 leads are typically set on the chest and
extremities. Chest leads V1-V6, and denotes the
leads on the limbs are called main (I, II, III) and
reinforced (aVR, aVL, aVF). All the leads give a
different picture of the fluctuations, but summarizing
information from all the electrodes, you can find out
details of the heart as a whole.

Computer console ECG Light together with
the program ECGControl allows you to record the
electrocardiogram in six standard leads, save as a file,
print, and carry out ECG contour analysis. In the area
of leads the fragment window displays the period
averaged electrocardiograms, on the selected slice
three standard (I, II, III) and three enhanced leads
(aVR, aVL, aVF).

Having a total picture of these elements ECG
you can judge the EHA (electrical heart axis), which



indicates the presence of blockades and helps
determine the location of the heart in the chest.There
is a special coordinate system, which is located on the
chest and pym3sl to determine which side has an axis.
Electrodes ECG, respectively, are located in this
coordinate system. In a healthy person the right
ventricle somewhat more left, so on the ECG heart
axis deviates slightly to the right and down. It is
considered to be the norm. In this case, the
cardiogram is called the normogram [4]. We examine
the normogram from ECGControl program. Figure 1,
2 show time series for three standard (I, II, III) and
three enhanced leads (aVR, aVL, aVF).
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F igure 1 - Time series for standard (I, 11, 1Il) leads
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Figure 2 - Time series for enhanced leads

Description of MDFA

The structure of the monofractal and
multifractal time series are different even though they
have similar overall root-mean-square (RMS) and
slopes H. The multifractal time series have local
fluctuations with both extreme small and large
magnitudes that is absent in the monofractal time
series. The absence of fluctuations with extreme large

and small magnitudes results in a normal distribution
for the monofractal time series where the variation is
described by the second order statistical moment (i.e.,
variance) alone. Monofractal detrended fluctuation
analysis (DFA) is therefore based on the second order
statistics of the overall RMS.

In the multifractal time series, local
fluctuation, RMS(v), will be extreme large magnitude
for segments v within the time periods of large
fluctuations and extreme small magnitude for
segments v within the time periods of small
fluctuations. Consequently, the multifractal time
series are not normal distributed and all g-order
statistical moments should to be considered. Thus, it’s
necessary to extend the overall RMS in the monofractal
DFA to the following g-order RMS of the multifractal
DFA.The important steps involved in this method of
analysis are mentioned here:

Step1: Computing the average

Let us suppose x(i) for i=1. . .N, be a non-
stationary time series of length N. The mean of the
above series is given by

X =1/ NS x(0) (1)
i=1

Step 2: Computing the integrated time series

Y(@)= i(x(k)—xave) for i=1,...N. ©)
k=1

Step 3: Dividing the integrated time series
to N, non-overlappingbins  (where N, =int(N/s)
and s is the length of the bin) and computing the
fluctuation function. Since N is not a multiple of s, so
in order to include this part of the series the entire
process is repeated starting from the opposite end.
Thus, 2N, bins are obtained and for each bin we
perform least square fit of the series and then
determine the variancefor each binv =1,2,.. N :

F2(s,v)=1/s3(Y((v =1)s +i) -, (i))* ,determine the
i=l1
variance for each bin v =N, +1,..2N:

FA(s,0) = 1sS (Y (v = N,)s + 1) — v, (D)2 2 0, (D) is the

i=1

least square fitted value in the bin v .
Step4: Computing fluctuation function
The g-th order fluctuation function £ (s) is obtained

after averaging over 2N bins.
2N
S o2 1251/
Fq(s)zl/(2Ns)V§1 (F(s,v)” o)1 3)

where q is an index which can take all possible values
except zero because in that case the factor 1/q blow s
up. F;, cannot be obtained by the nor m al aver aging

procedure; instead a logarithmic aver aging procedure
is applied

Fy(s)= eXp(l/(4Ns)2% In(F2(s,0)) ~ s"@ (4)
v=l



Step 5: The procedure is repeated by varying
the value of's. F, (s) increases with increase in value

of s. If the series is long range power correlated, then

F,(s) will show power law behavior F, (s) ~ s"@

If such a scaling exists In(F,(s)) will depend

linearly on In(s) ,with h(q) as the slope. In general the
exponent h(q) depends on q. For stationary time
series h(2) is identical with the Hurst exponent H.
h(q) is said to be the generalized Hurst exponent. A
monofractal time series is characterized by
uniqueh(q) for all values of q.

The generalized Hurst exponent h(q) of MF-
DFA is related to
the classical scaling exponent t(q) by the relation

7(q)=qh(g) -1 )

A monofractal series with long range
correlation is characterized by linearly dependent q
order exponent 7(g) with a single Hurst exponent H.
Multifractal signal have multiple Hurst exponent
andz(q) depends non-linearly on q. The singularity

spectrum f(a) is related to i(g) by
a =h(q)+qh'(q) (6)
f(@)=q(a—h(g))+1 (7
wherea is the singularity strength and f(«)

specifies the dimension of subset series that is
characterized by « . The multifractal spectrum is
capable of providing information about relative
importance of various fractal exponents in the series
e.g., the width of the spectrum denotes range of
exponents. A quantitative characterization of the
spectra may be obtained by least square fitting it to a
quadratic function around the position of maximum

o -
S (@)= A(a —0g)’ + Ble —ag) +C (8)
where C is an additive constant C= f(a,)=1. B

indicates the asymmetry of the spectrum. It is zero for
asymmetric spectrum.

The width of the spectrum can be obtained by
extrapolating the fitted curve to zero. Width W is
defined as

W=o-a, )
with f(a;)= f(a,)=0. It has been proposed by

some groups that the width of the multifractal spectra
is a measure of degree of multifractality. For a
monofractalseries, h(q) is independent of . Hence
from relation (6) and(7) it follows that the width of
the spectrum will be zero for amonofractal series. The
more the width, the more multifractal isthe spectrum.

The origin of multifractality in a time series
can be determined. Two basic sources of
multifractality in the time series are: 1) multifractality
due to broad probability density function for the
values of the time series; 2) multifractality due to
different long range correlations of the small and
large fluctuations.

The origin of multifractality can be ascertained
by analyzing the corresponding randomly shuffled
series. In the shuffling procedure, the values are put
into random order and hence allcorrelations are
destroyed. Hence, if the multifractality is due tolong-
range correlations, then the shuffled series exhibits a
non-fractal scaling. On the other hand, if the
originalh(q) dependencedoes not change, 1i.e.,
"(q) = hgupea (q) » then the multifractality is due to

the broad probability density, which is not affected in
theshuffling  procedure. If both kinds of
multifractality are present ina given series, the
shuffled series will show weaker multifractalitythan
the original series.

The autocorrelation exponent ycan be
estimated from the relation given below:
y=2-2h(Q2) (10)

For uncorrelated or short-range correlated
data, h(2) is expected to have a value 0.5 while a
value greater than 0.5 is expected forlong-range
correlations. Therefore, for uncorrelated data, y has

avalue 1 and the lower the value the more correlated
is the data.

The basic component of MFDFA is the local
fluctuation, RMS. Statistical parameters other than
RMS can be used to define the local fluctuation in a
time series. The MFDFA has been shown to perform
as well as or better than these multifractal analyses.
However, extensions of detrending procedure in
MFDFA should be considered when the biomedical
time series contains strong oscillatory or ramp-like
trends [5-7].

Description of results

Figures3-5 show scaling function Fq (q -order
RMS) and corresponding regression line computed by
MFDFA for three standard (I, 11, III) leads.

Figures 6-8 show scaling function Fq and
corresponding regression line for three enhanced
leads (aVR, aVL, aVF). The scaling functions
Fq(dots) and corresponding regression slopes Hq
(dashed lines) are q-dependent. It means that time
series are multifractal. They are time series: norm_1,
norm_2, norm_3, norm_avr, norm_avl, norm_avf.
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Figure 3- Function Fq for the norm_1
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q=0
q=5
5 q=5
Slope = Hg =0
al
q=5
16 32 64 128 256 512

Scale (segment sample size)

Figure 4- Function Fq for the norm_2
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Figure 5- Function Fq for the norm_3
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Figure 6 - Function Fq for the norm_avr
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Figure 7 - Function Fq for the norm_avl
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Figure 8 - Function Fq for the norm_avf

Figures9-14 show the g-order Hurst exponent
Hq for the time series, where the colored dots
represents the slopes Hq for ¢ =—5, 0 and 5. Hq are g-
dependent and time series are multifractal.

Figures 15-20 show mass exponent tq. The
multifractal time series have mass exponents with a
curved g-dependency and, consequently, a decreasing
singularity exponent hq.
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Figure 9 - Hurst exponent for the norm_1
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Figure 10 - Hurst exponent for the norm_2
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Figure 11 - Hurst exponent for the norm_3
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Figure 12 - Hurst exponent for the norm_avr



qg-order Hurst exponent
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Figure 13 - Hurst exponent for the norm_avl
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Figure 15 - Mass exponent for the norm_1
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Figure 16 - Mass exponent for the norm_2
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Figure 17 - Mass exponent for the norm_3
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Figure 18 - Mass exponent for the norm_avr

qg-order Mass exponent

@ tql5)=2.2838

® Hq(-5)=13254

® Hg(0) =0.96549

-5 -4 -3 -2 A 0 1 2 3 4 5

Figure 19 - Mass exponent for the norm_avl
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Figure 20 - Mass exponent for the norm_avf

The resulting spectrums are a large arc
where the difference between the maximum and
minimum hq are called the multifractal spectrum.
Figures 21-26 show the resulting spectrumsand

D,=f(a), hy=a.
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Figure 21 - Multifractal spectrum for the norm_1
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Figure 23 - Multifractal spectrum for the norm_3
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analysis in Octave for ECG data. Measuring the electrical impulses of the heart through an
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if an “irregular” heartbeat could be characterized as being monofractal or multifractal, as
opposed to being merely random. Using times series from electrocardiogram data, anyone is able
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